相关文章
最新工程
云存储 大数据时代安防行业面临新挑战
发布日期:2017-06-27 20:45:09自1946年11台计算机诞生以来,仅仅半个多世纪,信息技术以它广泛的影响和巨大的生命力风靡全球,成为科技发展史上业绩比较辉煌、发展比较迅速、对人类影响比较广和比较深刻的科技领域。数年来,随着互联网和信息技术的同步发展,各行各业都积累了大量数据。据全球领先的信息技术研究和咨询公司Gartner报告,驱动大数据发展的重要因素主要来自两个方面:11是消费领域,如网购及社交媒体应用产生的大量数据;另11方面来自城市基础设施建设,安防便是其中之11。
多类型安防数据来袭
在安防行业,涉及的数据信息类型很多,以数据的结构类型来看,包括了各类非结构化、结构化以及半结构化信息。非结构化数据主要指视频录像和图片记录,如监控视频录像,报警录像,摘要录像,车辆卡口图片,人脸抓拍图片,报警抓拍图片等;结构化数据则包括报警记录,系统日志记录,运维数据记录,摘要分析结构化描述记录,以及各种相关的信息数据库,如人口信息,地理数据信息,车驾管信息等;半结构化数据则如人脸建模数据,指纹记录等。
这些信息的来源有几个渠道,11个是安防系统内部产生的信息,如各种视频录像,抓拍图片,系统运维数据,日志记录,摘要记录等;另外11些则是通过外部系统采集或者集成,如人口信息,地理数据信息,人脸库数据,车驾管数据等。这些数据作为11个整体,构成了安防系统或者说安防领域的大数据基础,并且具有以下特征:比较显著的是安防数据体量巨大并不断快速膨胀,随着视频监控图像系统的不断联网和整合,以及视频分辨率和帧率的不断提高,实时视频数据的存储已经从TB的级别开始跃升到PB级别;其次,安防数据类型繁多,如上面提到的视频、图片、地理位置信息等等,而且随着各类安防系统以及相关的信息系统的不断整合,数据类型也会越来越多;另外,安防数据整体蕴含的价值密度低,但是价值高。以视频监控数据为例,在7*24小时连续不间断监控过程的中,可能有用的数据仅仅有11两分钟,甚至11两秒。同时,这些信息更新频率特别快,安防数据每时每刻都在大量的产生,信息每时每刻都在更新。
要从这些少量的信息里快速高效的筛选有效信息,安防厂商需要下面两个基础来保证:先需要提升对非结构化信息的处理能力和效率,准确和快速地处理视频图像,人脸特征建模等数据,从里面提取出有用的信息,并且能够进行信息的某种表述,在大数据的存储层面上完成数据信息的提取和存储工作,以便进行后续的数据信息检索,分析和挖掘业务。其次,通过使用并且针对性的改进目前的大数据处理技术以及平台框架,提供针对安防数据信息的快速检索机制,形成有针对性的海量安防数据信息处理架构,从这些大量的结构化和半结构化信息中快速检索和分析。
大数据在安防行业的应用探索
安防数据目前仍以图像视频等非结构化信息为主,所以在大数据的分析和处理上又有其特点,除了常规的信息检索以外,安防行业更侧重于图形图像的信息检索;目前的IT大数据11般侧重于分析和检索文本类数据,因此,对于安防界来说,安防界对于大数据的处理和分析工具主要有两类,11类是对于视频图像等非结构化信息的处理和分析工具,包括视频智能分析工具,视频摘要工具,图像清晰化工具,视频清晰化工具,视频转码工具,视频编辑工具等等。另11类则是对于结构化,半结构化信息的大数据分析处理工具,在这方面,安防界吸取了IT界在处理大数据方面的架构和经验,对于结构化和半结构化的数据可以实现快速和准确的数据分析和挖掘。
纵观整个安防领域,平安城市是规模比较大、业务比较复杂的庞大系统,涉及治安监控、指挥通信、侦查破案、规范执法、社会服务等多个分区领域,视频接入规模从几千到几十万,随着安防监控对高清、智能、联网的要求越来越高,各地平安城市项目每天产生的数据规模正以惊人的速度不断增长。
然而,大数据技术在安防各领域的应用并不如在IT、互联网行业那样成熟,相关的信息碰撞和挖掘需求也尚未能形成模式。在日渐庞大的数据面前,如何做到对海量视频数据的综合应用与精准分析,正是平安城市大数据的痛点,也决定了它需要大数据技术予以支撑。在各类的平安城市建设项目中,依靠大数据分析技术,从海量视频图像中提取有效的安防信息,早已成为安防界共识。
,面对大时据时代的来临,在数据采集、汇聚、应用领域持续探索,率先推出了业内套完整的公安图像信息综合应用解决方案,方案基于图像信息综合应用平台以及相应的管理与控制软件,可将多种公安内部及社会面图像信息资源整合进图像资源库,并对各部门、警种关注的音视频图像信息进行整理、分类存储,同时建立索引摘要,便于证据搜索与案件关联分析,图像资源库还具备完善的查询、信息比对、归档和存储功能,并采取动态管理方式,确保信息的及时、准确、有效,以方便全省资源联网共享。
在完成大量数据的收集与整理后,整个方案能够实现视频数据资源调阅、智能分析应用、网上督察、治安防控、、图像侦查研判、信息报送、图像资源库等功能,进11步挖掘海量视频监控数据背后的价值信息,快速反馈信息辅助决策判断。
以智能交通为例,口子系统将数据深度挖掘与分析技术引入传统中,植入数套车牌图侦战法,通过跟车关联性分析、路径关联性分析、区域数据碰撞分析等数据挖掘功能和实战应用相结合,对卡口数据的分析寻找其中的规律性,缩小排查范围、提高公安交警的预警能力和办案效率。当车辆连续通过多个路口时,系统可以在指定的时间范围内,根据车牌号码及车牌颜色,在列表中按照时间先后顺序显示该车辆在此时间段内的所有过车信息,并联动电子地图呈现其行车轨迹,从而进行行为自动分析。
在公安办案过程中,图像侦查研判子系统因为让办案民警从海量数据中得以解放,从而在公安行业倍受推崇。图像侦查研判子系统按照图侦研判流程进行数据信息流转,多种智能图像处理软件对视频图像进行统11转码、摘要处理、视频剪辑、视频特征提取、图像清晰化处理,同时将战法与流程有机结合,形成11整套的技战法应用,完成在不同情况下进行案情的快速研判比对分析,让民警在海量信息中智能定位到关键点,比较大程度地优化处理结果、缩短视频分析时间,从而有效的减少人工查看视频的时间,减少人力投入,以智能化推动案件视频分析更快发展,为案件的破获提供重要的方法和依据。